
Cranking, adiabatic phases and monopoles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 2253

(http://iopscience.iop.org/0305-4470/21/9/037)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 21 (1988) 2253-2260. Printed in the U K  

COMMENT 

Cranking, adiabatic phases and monopoles 

Michael C Birse and Judith A McGovern 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, U K  

Received 5 October 1987, in final form 26 November 1987 

Abstract. Lowest-order cranking about a principal axis breaks down for a system with 
non-zero ( J ; )  along its symmetry axis. Such a system should be cranked about an axis at 
an angle to the symmetry axis. This can be understood in terms of the Berry phase, which 
acts like the field of a magnetic monopole. Possible applications are discussed. 

1. Introduction 

In studying molecular, nuclear or field-theoretic systems it is often convenient to start 
with a deformed solution to a mean-field (or Hartree-Fock) approximation. The 
approximate solution breaks some of the symmetries of the Hamiltonian, for example, 
translations or rotations. Such symmetries mean that the deformed state will be 
degenerate. These degeneracies will show up as ‘zero modes’ in the quantum fluctu- 
ations about the mean-field solution. 

Eigenstates of the symmetry operators can be constructed by projection: taking an 
appropriate linear combination of the degenerate deformed states. Alternatively, one 
can introduce collective coordinates corresponding to the broken symmetries and 
quantise these. (For reviews of these ideas in nuclear physics and field theory, see [ 1-31.) 

Exact projection of a deformed state can be technically very complicated, especially 
if large numbers of particles are involved. Hence it is often simpler to use a ‘cranking’ 
approximation to calculate the energies of the symmetry eigenstates [ 1,2]. This involves 
minimising the energy in a frame which is rotating about a principal axis of the system. 
However, we have found problems with cranking when the system has a non-vanishing 
expectation value for one of the symmetry generators. As we show in § 2, the lowest- 
order cranking equations then have no finite solutions. This can be avoided if one 
cranks about an axis at an angle to the symmetry axis. Villars has shown this within 
the framework of adiabatic TDHF [4]. Here we show that the same result can be 
obtained directly, by regarding cranking as an approximation to variation after projec- 
tion [5]. 

This effect can be understood in terms of an additional contribution to the phase 
of the rotating state, coming from the overlaps between the deformed states. This is 
the ‘Berry phase’ [6]; it acts like the field of a magnetic monopole [7], producing 
velocity-dependent forces on the rotating system. 

In 8 3 we discuss the monopole analogy in more detail. A charged particle moving 
in the monopole field has an additional contribution to its angular momentum propor- 
tional to its radius vector relative to the monopole. This is analogous to the non-zero 
( J z )  along the symmetry axis. The minimum angular momentum of the charged particle 
can be related to the angular frequency of small cyclotron orbits about an axis close 
to the symmetry axis of the particle-monopole system. 
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Based on this analogy, in 5 4 we discuss further the cranking of a system with 
non-zero (J.). The angle between the cranking and symmetry axes is to be regarded 
as a variational parameter of the wavefunction. We discuss the limits of large and 
small ( J z )  and the relation to the usual cranking. 

Finally, in § 5, we mention some possible applications of these ideas, in particular 
to systems with symmetry groups larger than SU(2). 

2. Cranking 

In the self-consistent cranking approximation one looks for a time-dependent solution 
to the mean-field equations of motion, where the solution moves with constant velocities 
in the collective coordinates. The dependence of the energy on these velocities gives 
the inertia parameters for the collective motions. Obviously this is a semiclassical 
approach; it should be a good approximation to projection when the overlaps between 
the deformed states are sharply peaked functions of the collective coordinates [SI .  

The solution of the time-dependent mean-field (TDMF) equations is equivalent to 
minimising the expectation value of the Hamiltonian in a moving frame. To illustrate 
the approach we consider a deformed system which breaks rotational invariance. We 
assume that the system has an  axis of symmetry, which we take to be the z axis. To 
crank the system one minimises the energy in a frame rotating with constant angular 
velocity w about a principal axis: 

( H ‘ )  = ( H )  - w ( Jx) .  (2.1) 

( J,) = 9 w .  (2.2) 

(J,) = [ J ( J +  l)]”’. (2.3) 

The moment of inertia can then be found from 

The angular velocity acts as a Lagrange multiplier which should be adjusted to give 

To lowest order, the rotational spectrum is then given by 

1 
2 4  

E,,, = - J (  J + 1). (2.4) 

This should be a good approximation provided w is small enough for this, essentially 
adiabatic, treatment to be valid. 

We have found problems with this approach when the system has non-zero (J,)  
along the symmetry axis. There are no solutions to the TDMF equations where the 
system rotates slowly about a principal axis. The lowest-order cranking equations have 
no finite solutions. 

To see how this arises, consider the lowest-order cranking equations. For a many- 
fermion system these have the form [ 1,2]  

where Sp is the first-order change in the single-particle density matrix, and  JIph’ denotes 
the particle-hole matrix elements of the angular momentum. For a soliton one has a 
similar set of equations [8], with changes to the mean boson fields coupled in. The 
(Hermitian) matrix on the LHS of (2.5) is the ‘stability matrix’; it is the linearised form 
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of the mean-field equations of motion. It also appears in the RPA equations for 
small-amplitude oscillations about the mean field [ l ,  2,9]: 

The RPA equations have zero-energy solutions corresponding to the symmetries 
broken by the mean-field solution. In particular, there is one for rotation about the y 
axis, 

(2.7) 

Hence (2.6) will have no finite solutions if the inhomogeneous term has a non-zero 
overlap with the zero mode. This overlap has the form 

= ([JJ’, 5x1) 
= -i(Jz). 

From this we see that the problem will arise whenever ( J z )  is“non-zero. 
Note that this does not show up in the usual treatment of the intrinsic states of 

diatomic molecules and deformed nuclei. There, states with J ,  = i K are degenerate 
and one can take the intrinsic state to be an equally weighted mixture [ lo ,  111, with 
(J , )  = 0. 

It means that when one attempts to crank about a principal axis (e.g. the x axis) 
the system tries to realign the cranking axis by rotating about the y axis. The origin 
of this behaviour can be understood by examining the angle dependence of the overlaps 
between rotated deformed states. 

Consider, for simplicity, an intrinsic state which is an eigenstate of J,  with J,  = K .  
The rotated states are 

(2.9) la, P ,  7) = exp(-i@J,) exp(-iPJ,,) exp(-iy~,)I@) 
in the usual convention [12]. Projection produces a symmetry eigenstate which is a 
linear combination of these: 

(2.10) 

Note that, due to the symmetry of the intrinsic state about the z axis, the integrand is 
independent of the Euler angle y. Hence y has no physical significance; different 
choices of y give different phases to the wavefunctions-they correspond to different 
choices of gauge. A convenient choice is y = -a, giving 

2 J + 1  ‘ I 2  
[ J M ) = ( y )  I s i n p  d a  dpDJ, , , (n ,p-a)* (a,p, -a) .  (2.11) 

The energy of a projected state is 

(2.12) 
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Provided this energy depends smoothly on J,  one may expand the matrix element 
(a1Hln') in terms of derivatives with respect to the Euler angles [ 5 ] .  To second order, 
this gives 

(RIHIR')= (a0+a,.2e:"'+ a,2re:"'2;"'+. . .)(ala') (2.13) 

where 2:"' denote the intrinsic angular momentum operators acting on the Euler angles 
R. The coefficients a,, a, are given by 

a, = ( @ / H  - a * J / @ )  

(@lHJl@)c = (@l(a * J ) J l @ ) c  (2.14) 

in the notation of [2]. 
The usual arguments [5] can be extended straightforwardly to include a non-zero 

expectation value for J z ,  as well as J,. Keeping terms to first order in 2:"' one obtains 

E, = ( @ ~ H / @ ) + w , { [ J ( J +  1) -K'] '"-(@/J,I@)]+w,[K -(@IJJ@)}. (2.15) 

Hence the cranked intrinsic state can be found by varying 

(@lH'l@) = ( @ . H  - W,J, -w,J,J@) (2.16) 

with respect to 10). The angular velocities should be adjusted to give 

( @ l J , ( @ ) = [ J ( J +  1)-  K']"' 

(@lJzl@) = K. 
(2.17) 

A system with non-zero (J , )  should thus be cranked with an angular velocity which 
has a non-zero component along the symmetry axis. This result has also been found 
by Villars [4], who treated cranking as an adiabatic approximation to time-dependent 
Hartree- Fock. 

The reason for this becomes clearer when we examine the collective motion of the 
system. Although we know, from symmetry considerations, that the collective 
wavefunctions are D functions, these could also have been obtained from the Hill- 
Wheeler equation corresponding to (2.12) and (2.13): 

{ d3a'(a,  + a , 2 ~ " ' +  u l J 2 ~ ' 2 ~ ' + .  . .)(ala')f(fl') = 0. (2.18) 

When the overlap (ala') is sharply peaked at a= R', this reduces to a Born-Oppen- 
heimer-type equation for the collective wavefunction f(0). 

In the uncranked intrinsic state the expectation values of J, and J,. vanish, and so 
the coefficients a, are given by [5] 

(2.19) a , ,  = a** = 1/24, 

all others being zero. Hence the collective Hamiltonian is, to second order, 

1 
2 =- [ 9 2  - ( 2 3 2 1  

col' 2 9 ,  
(2.20) 

apart from constant terms like a, + a&;"'. 
Since the intrinsic state is an eigenstate of J z ,  the y dependence of (a1 is trivial: 

9;'(nl= K(R/ .  (2.21) 
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Hence we can fix the gauge as in (2.11) by pulling out a factor of exp[iK(cu + y) ]  from 
the overlap. The gauge-fixed Hamiltonian then involves only CY and p. It can be 
written as 

a* 
aP2 

- (2.22) 

This has precisely the form of the Hamiltonian for a charged particle moving round 
a magnetic monopole [ 131. The components of the vector potential are 

A, = O  A, = K ( l  -COS P )  (2.23) 

hence this is a gauge in which the Dirac string runs along the negative z axis. The 
potential leads to velocity-dependent forces in the effective (Born-Oppenheimer) 
Hamiltonian for adiabatic rotations [ 141. When the system is adiabatically rotated 
through a closed cycle, they give a non-trivial contribution to the phase of the 
wavefunction-the Berry phase [6]. To complete the correspondence note that the 
monopole spherical harmonics [13] are identical to the D functions which are the 
collective wavefunctions for a rotating system with J ,  = K # 0. Comparing the 
expressions in [I31 with those in ch 2 of [12], one sees that 

where y = +CY correspond to the two choices of gauge considered in [13]. 
Finally, if IK I = f the large mixing between K = +: states means that this approach 

must be modified. As shown by Wilczek and Zee [15], such a system can be treated 
by including non-Abelian gauge potentials in the collective Hamiltonian. 

To clarify the effects of the velocity-dependent forces on cranking, we discuss the 
classical charged-particle-monopole system in more detail in the next section. 

3. Monopole analogy 

Here we consider a charged particle moving on a sphere of radius R at whose centre 
there is a magnetic monopole. This illustrates the effects of the gauge potentials on 
cranking, which is essentiaily a classical approximation to the collective motion. 

Classically the particle can move in circular orbits at an angle p to the axis of 
rotation, with angular velocity 

qg 
mR2 cos p w =  (3.1) 

where q, m are the charge and mass of the particle, and g is the magnetic charge of 
the monopole. 

Note that there is a minimum angular velocity for the possible orbits, 

w ,  = q g / m R 2 .  (3.2) 
This is just the cyclotron frequency for small-radius orbits, that is, with /3 very small. 

Another feature of the charged-particle-monopole system is that the conserved 
angular momentum is [16] 

L = mr x v - qgF. (3.3) 
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The additional contribution to the angular momentum, qg, lies along the direction 
from the monopole to the particle-the symmetry axis of the system. Hence it is 
analogous to the non-zero (J , )  of the previous section. It means that the system has 
a minimum angular momentum 

K = qg (3.4) 
which is quantised to half-integer values by Dirac’s condition [7]. 

Note that, although the minimum angular velocity and the angular momentum lie 
along the symmetry axis, they are still related by the moment of inertia for rotation 
about a perpendicular axis 

4 = mR’. (3 .5)  
Although the monopole field produces velocity-dependent forces preventing the system 
from rotating about a principal axis, it does not affect the moment of inertia. 

4. Modified cranking 

We now return to the discussion of a system with non-zero ( J z ) ,  and consider cranking 
about an  axis at an  angle p to the symmetry axis. That is, we minimise 

(4.1) ( H ’ )  = ( H )  - w sin p ( J x )  - w cos p ( J z )  

where the angle p is to be regarded as an  adjustable parameter, 

the angular momentum of the cranked state is 
First we consider a restricted variation keeping the mean fields fixed. In this case, 

( J x j  = 9,w sin p (4.2) 
where 4, is the Inglis moment of inertia [ 1,2]. The expectation value of the  Hamiltonian 
in the rotating frame has the form 

( H ‘ )  = constant - f 4 , w 2  sin’ p - (J , jw  cos p. (4.3) 
We can now vary (4.3) with respect to p to determine the orientation of the system 
which minimises ( H ’ ) :  

a 
- (H’)  = -4,w2 cos p sin p +(J,)w sin p = 0. 
ap (4.4) 

Obviously p = 0 is always a solution to (4.4). Provided 

w > ( J , ) / 4 , =  w,  

there is another solution given by 

cos p = w,/w. 

If we examine the stability of the p = 0 solution, we find 

and  so for w < w, the solution is stable. The system sits with its symmetry axis along 
the cranking axis, a situation which does not correspond to a physical rotation. But 
for w > w, this solution becomes unstable. The minimum of ( H ’ )  is the solution given 
by (4.6), which is a physical rotation about the cranking axis. Hence w, plays the 
same role here as the cyclotron frequency (3.2) does for the monopole system. 
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For cases where w is very close to w ,  (i.e. p is small), self-consistent variation of 
the mean fields will not change this. To see this, note that if w sin p is small enough 
we can use first-order cranking. However, p = 0 is an  extremum of ( H ’ )  and so is a 
solution to the linearised equations of motion. The lowest-order cranking solution will 
thus try to realign the symmetry and cranking axes. It will have the form of the zero 
mode for rotation about the y axis and can be dropped since we have already treated 
the zero mode by the p variation. 

Higher-order cranking effects will of course be present. These can change the 
coefficient of p4 in ( H ’ )  and so can affect the value of p at which the minimum occurs 
for a given w. However, they will not change the moment of inertia (the coefficient 

The softness of the zero mode means that it is not amenable to low-order cranking. 
If one restricts the changes in the fields to be orthogonal to the zero mode, these may 
be treated perturbatively provided w is small compared to the intrinsic excitation 
energies of the system. In  general, one must combine this with a variation with respect 
to p. 

There is another limit in which things simplify: when (J , )  is small compared with 
the total angular momentum. Then we have p =$T and, to lowest order, the cos p 
term can be neglected. If w is small enough, we can still use standard lowest-order 
cranking, provided we are careful to remove the singular zero-mode piece from the 
cranking equations (2.5). The zero mode could then be handled by varying p. This 
would require the inclusion of terms which are higher order in w,  but would not affect 
the moment of inertia. 

of w’p ’ ) .  

5. Discussion 

We have found that the lowest-order cranking equations have no finite solution for 
systems with (J,)  f 0. This can be understood in terms of the adiabatic phases which 
appear in such a system. These produce velocity-dependent forces which prevent the 
system from rotating freely about a principal axis. The behaviour is analogous to that 
of a charged particle moving around a magnetic monopole. If it occurs one should 
use a cranking axis at a n  angle to the symmetry axis. The angle should be varied to 
minimise the energy of the rotating system. 

The effects d o  not appear in the standard cranking approach as applied to intrinsic 
states of deformed nuclei o r  diatomic molecules. This is due to the degeneracy of 
states with J ,  = * K  which allows one to form intrinsic states with (J,)  = 0. It could 
show up  if there were a large CP violation breaking this degeneracy. However, this 
does not correspond to a realistic situation. 

More important applications are likely to be in systems with larger symmetry groups 
than SU(2).  For example, we have found this behaviour in cranking a chiral soliton 
with three flavours of quark [17]. The model has a n  SU(3) flavour symmetry, but this 
is broken by the choice of intrinsic state. This state is taken to have a hedgehog 
structure [ 181, constructed from non-strange quarks and mesons. It is symmetric under 
hypercharge rotations, but not under the operation of the other generators of SU( 3 ) .  
The hypercharge of the non-strange quarks in the hedgehog acts like a non-zero angular 
momentum along the symmetry axis and  has similar effects. In this case one cannot 
form states with zero net hypercharge since a soliton with the opposite intrinsic 
hypercharge would correspond to an  antibaryon. 
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Similar effects should occur in SU(3) versions of the Skyrme model [19]. There 
the Wess-Zumino term [20], which acts as a surrogate for the quarks, is linear in time 
derivatives of the fields and leads to velocity-dependent forces of the type discussed 
here. Since the Wess-Zumino term can be obtained from an adiabatic approximation 
to the fermion action, it has a structure which explicitly reflects the monopole-like 
form of the adiabatic phases [20]. 
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